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small molecules starting from the phases obtained by 
the CEDA, together with the results from the PIP 
illustrate ab initio phase determination and sub- 
sequent phase refinement. These were obtained using 
restraints currently employed in DMM. The results 
are encouraging, although the usefulness of the pro- 
posed method in routine structure determination 
requires further thought and investigation. 

I am grateful to Dr R. J. Poljak for useful dis- 
cussions, and to Drs H. L. Ammon, M. Oda and H. 
Mazzocchi for providing the crystal data used in the 
calculations described above. This research was sup- 
ported by grants from the CNRS (URA 359) and the 
Institut Pasteur. 
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Abstract 

Twelve arithmetic crystal classes contain only one 
space-group type; others contain various numbers up 
to sixteen (mmmP and 4/mmmP). In the multi- 
member classes the number Nsg of substances having 
a particular space-group type can be modelled quanti- 
tatively (unweighted R2~ 0.05) by 

Nsg = Ace exp {~ (Xi)cc[xi]~g}, 

where Ave is a normalizing constant for the arithmetic 
crystal class, [xi]~g is the number of symmetry ele- 
ments [2, 21, m, a, b, c, d, n, 3, 3, 31,32, 4 , . . . ]  of type 
xi in the unit cell of the space-group type, (Xi)~c is a 
parameter characteristic of the arithmetic crystal class 
and the symmetry element, and the summation is over 
all the elements xi that are to be considered. In many 
cases the parameters X~ are equal, within their esti- 
mated standard deviations, throughout a cohort larger 

0108-7673/90/090742-13503.00 

than the arithmetic crystal class (such as a geometric 
crystal class or an entire crystal system). The above 
equation can then be applied to the larger cohort, 
with arithmetic crystal class included as an additional 
'symmetry element' in the sum in the exponent. There 
is at present no theory to account for the different 
popularities of different arithmetic crystal classes. 

1. Introduction 

The space-group type P21/c accounts for about one- 
third of all known molecular organic structures, 
whereas the space-group type P2/m has no certain 
example. Why? Ultimately the space group of a crys- 
tal of a particular substance is determined by the 
minimum (or a local minimum) of the thermodynamic 
potential (Gibbs free energy) of the van der Waals 
and other forces, but a very simple model goes a long 
way towards 'explaining' the relative frequency of the 
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various space-group types within a crystal class. The 
basic idea that the space-group frequency is deter- 
mined by packing considerations was introduced by 
Kitaigorodsky (1945, 1955), who pointed out that the 
most frequent space-group types are those that permit 
the close packing of triaxial ellipsoids. Wilson (1987, 
1988a, b) used the complementary idea that space- 
group types are rare when they contain symmetry 
elements - notably rotation axes and mirror planes 
- that prevent the molecules from freely choosing 
their positions within the unit cell. A twofold axis 
excludes molecular centres from a column of diameter 
equal to some molecular diameter (say M),  a mirror 
plane from a layer of thickness M, and a centre of 
symmetry from a sphere of diameter M. One thus 
expects that in any arithmetic* crystal class the sym- 
morphic space-group type will have very few 
examples, and that one of the non-symmorphic space 
groups will have the greatest number. 

The Cambridge Structural Database (Allen et al., 
1979) contains assignments of space groups for a 
variety of different types of organic compound. The 
data vary widely in quality. For the present purpose 
a selection was made, rejecting space groups not 
substantiated by a full structure determination or 
dubious because of disorder in the crystal. The simple 
packing considerations discussed in the previous 
paragraph would not apply to crystals in which the 
intermolecular binding was ionic rather than van der 
Waals or the like, so that space groups of ionic struc- 
tures were also rejected. The data in Wilson (1988a) 
relate to the database as it was in January 1987; those 
in Wilson (1988b) and in this paper to January 1988. 

The object of statistical analysis is to model the 
frequency of occurrence of the space-group types 
within some arbitrary but possibly significant selec- 
tion from the 219 effectively distinct space-group 
types (compare Donohue, 1985, and references cited 
therein). The selection may be smaller than a 
geometric crystal class, or larger, up to a crystal system 
or beyond. Most names for 'group' have a technical 
meaning in crystallography, but 'cohort'  does not 
seem to have been pre-empted. The selection under 
discussion at any time will here be called the 'current 
cohort' (cc), or simply 'cohort'. The number of occur- 
rences of a space-group type in various cohorts of 
the monoclinic and orthorhombic crystal systems 
could be represented semi-quantitatively by 

related to the size of the cohort, Bee and C¢c are 
parameters characteristic of the cohort, [2]sg is the 
number of twofold axes and [m]~g is the number of 
mirror planes in one unit cell of the space-group type. 
The gross effect of multiple cells (C, I, F and in the 
trigonal system R) is allowed for by dividing the 
actual number of symmetry elements in the multiple 
cell by two, four or three to obtain the number in a 
volume-equivalent cell. In order to obtain quantita- 
tive agreement between the observed and calculated 
values of Nsg, it is necessary in most cohorts to allow 
for properties of the space-group type other than [2] 
and [m]. Equation (1) then becomes 

Nsg = A~c exp {Z (X~)¢~[x,]~g}, (2) 

where [xi]sg is the number of symmetry elements of 
type x~ in the unit cell of the space-group type, (X~)¢c 
is a parameter characteristic of the cohort and the 
symmetry element, and the summation is over all the 
elements x~ that are to be considered. 

In addition to 2 and m, Wilson allowed (i) for the 
geometric crystal class, (ii) for the type of cell 
(P, C, / ,  F, R), (iii) for the orientation of the space- 
group type relative to the point group in the six crystal 
classes (mm, 4m, 32, 3m, 3m, 6m)* for which it is rel- 
evant, (iv) in the more symmetric crystal systems for 
the numbers of the various threefold, fourfold and 
sixfold axes, and (v) for a distinction between 'free' 
symmetry elements (not lying on, but possibly inter- 
secting, other symmetry elements) and 'encumbered'  
symmetry elements (lying on other symmetry ele- 
ments that affect a larger fraction of the unit cell). 
The first three of these, at the level of the cohort equal 
to a geometric crystal class, are exactly equivalent to 
classifying the space-group types by arithmetic crystal 
class. At coarser levels, and in particular at the level 
of the cohort equal to a crystal system, arithmetic 
crystal class as a single factort gives better agreement 
than using (i)-(iii) as three factors. Ramakumar  
(1988) has suggested that the number of molecules 
in the asymmetric unit and the type of molecule (for 
example, small molecule versus protein) may affect 
the space-group distribution significantly. Terms cor- 
responding to these factors could be included in the 
sum in (2) if desired. 

There are twelve arithmetic crystal classes (1 P, 1P, 
2C, 222F, ~,P, ~,/, 3R, 3P, 3R, 32R, 6P, 23F) that 

Nsg=A¢¢exp(-B¢c[2]~g-C¢¢[m]sg), (1) 

where Nsg is the number of occurrences of the space- 
group type in the cohort, Ace is a normalizing constant 

* Arithmetic crystal classes are treated from an abstract view- 
point by Wondratschek (1987, pp. 719 and 728). A descriptive 
treatment is planned for Chapter 1.4 of Volume C of International 
Tables for Crystallography. 

* It is convenient to use the 'short' symbols mm, 71m etc. instead 
of the 'full' symbols mm2, 7~m2 etc. when it is desired to emphasize 
that the question of orientation is deliberately held open. 

t Statistical modelling programs distinguish between variates 
and factors. The values of variates are ordinary numbers; [2], 
[ m ] , . . .  fall into this category. Factors are qualitative; they include 
type of cell, geometric crystal class, metal-organic compound, 
p ro te in , . . . .  The programs allow appropriately for both variates 
and factors; see Baker & Nelder (1978), sections 1.2.1, 8.5.2, 22.1 
and 22.2.1. 
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contain only one space-group type, and are 
necessarily fitted exactly by a model based on arith- 
metic classes. They thus provide no evidence for or 
against the model. They include three (P1, P3, R3) 
of the five space-group types with 'free' centres of 
symmetry, but the two others (P2,/c and Pbca) are 
also fitted exactly by a model allowing for free centres. 
Enantiomorphous space-group types (P3~, P32 etc.) 
must be combined; there are thus (230-  12 - 2  - 11) = 
205 space groups that can provide evidence for the 
general correctness of the model and for the magni- 
tude of the coefficients Bc~, Cc~ , . . . ,  (Xi)~ in (1) and 
(2). However, the number of structures having the 
more symmetric space-group_types is very limited 
(P4~2~1 has 167 examples, R3 has 132, I4, has 100, 
all others under 100), and the parameters correspond- 
ing to many of the symmetry elements are much 
smaller than their program-estimated standard devi- 
ations. There are two cases to be considered. (i) The 
parameter is small, as well as being much smaller 
than its program-estimated standard deviation. In 
such cases it could be set equal to zero, usually 
without appreciable detriment to the fit and with 
reduced program-estimated standard deviations for 
the remaining parameters. (ii) The parameter is large 
and negative, with a very large program-estimated 
standard deviation. Such cases arise when the space- 
group types containing the corresponding symmetry 
element have very few or no examples. The parameter 
must then be retained, but with the realization that 
its numerical value has little or no significance. In 
practice, 3, 4, 6, 42, 62,4 and 63 dropped out, either 
because of linear relationships (§ 1.1) or because their 
coefficients were negligibly small. 

The best (in some sense) values of the parameters 
in equations like (1) or (2) can be fitted to the observa- 
tions by various techniques embodied in statistical 
programs available on all but the smallest computers. 
The program used for the tables presented here was 
GLIM [generalized linear interactive modelling 
(Baker & Nelder, 1978)], which gives maximum- 
likelihood estimates of the parameters for a wide 
range of functional forms. To use the program it is 
necessary to specify not only the form of the function 
- (1) or (2) in this case - but also the variance of the 
observations. The model treats the frequency of 
occurrence of a space-group type as a binomial 
sample from a population represented by the number 
of structures in the current cohort, with the variance 
discussed in Appendix A of Wilson (1988a); the mean 
of the observed and calculated values of N~g was used 
as the best available estimate of the space-group 
frequency. [A weighted mean might be preferable, 
but an analysis of bias comparable with that of Wilson 
(1976) for parameters of a different type is lacking.] 
In the accompanying tables two measures of agree- 
ment are given: the first is the unweighted R2 familiar 
in crystallography; and the second is the scaled devi- 

ance, frequently used in statistics.* If the scaled devi- 
ance does not exceed the number of degrees of free- 
dom by more than three standard deviations, the 
model may be regarded as satisfactory (Wilson, 1980). 
The statistical properties of R2 have not been investi- 
gated in detail, but a rough calculation shows that 
the expected value of (R2) 2 is approximately 

((R2)2)=(n-p)(Y.  Nsg)/[n Z (Nsg)2], (3) 

where n is the number of space-group types in the 
cohort and p is the number of parameters evaluated 
(Wilson, 1988b). This can become large when Y. N~g 
is small, even if the difference between the observed 
and calculated values of Ns~ is within one or two 
units. In the following text and tables the square root 
of the quantity given by (3) is denoted by Rrm~. 

It should be stated that counting equivalent sym- 
metry elements is to some extent arbitrary. Does the 
unit cell of P2,/c have one or eight 'free' centres of 
symmetry? Does P2 have one or four twofold axes? 
Does Prn have one or two mirror planes? It makes 
no difference to the statistical fit, provided that the 
counting is done consistently throughout the current 
cohort; if [m] is halved or doubled, Ccc is doubled 
or halved, and the calculated values of N~g are 
unaffected. The numbers actually used in the calcula- 
tions are, of course, always indicated in the compara- 
tive tables. 

1.1. Linear relationships 

Within an arithmetic crystal class there are 'laws 
of conservation' of symmetry elements. For example, 
in 222P the numbers of twofold axes and of twofold 
screw axes are different in different space-group types, 
but their sum remains constant: 

[ 2 ] + [ 2 , ] = 3 .  (4) 

The same 'law' holds for 222C, 222I and 222F if the 
actual numbers of axes are divided by 2 or 4 to give 
the numbers in a volume-equivalent cell. The same 
equation holds for mmmP, and in addition 

[m]+[a]+[b]+[¢]+[n]= 3. (5) 

Equations (4) and (5) also hold for mmmC, mmml 
and mmmF when the actual numbers are divided by 
2 or 4 and the d glides are included in the last case. 

Equations (3) and (4) are simple examples of what 
statistical texts call linear relationships. In the present 
context the general linear relationship could be 
written 

E a,[x,] = k, (6) 

where the ai's and k are integers constant within an 
arithmetic crystal class, and ordinarily within a 

* In the tables of this paper the scaled deviance quoted is the 
actual value of Y.(obs.-calc.)2/cr 2, not the quantity given by the 
program GLIM (presumably-21nLmax). 
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Table 1. Observed and calculated frequencies of space-group types in the monoclinic system; the cohort is the 
entire system 

Space g roup  Ari thmetic  Frequency  
No. Symbol  class [2] Observed Calculated 

3 P2 3 1 0 6 4 
4 P2 t 0 0 2488 2489 
5 C2 4 0.5 0 296 296 
6 Pm 5 0 1 1 0 
7 Pc 0 0 133 133 
8 Cm 6 0 0.5 17 18 
9 Cc 0 0 355 354 

10 P2/m 7 1 1 0 0 
I l P21/m 0 1 192 191 
13 P2/c 1 1 120 121 
14 P2t/c  0 0 13 877 13 877 
12 C2/m 8 0.5 0.5 118 120 
15 C2/c 0.5 0 2354 2353 

Parameter  values with program-es t imated  s tandard  deviations 

Coefficient o f  Value E.s.d. 

[2] -6.41 0-20 
Ira] -5-96 0.17 
[i] -1.67 0.18 

Arithmetic class 3 -3.39 0-18 
4 -2.31 0.12 
5 -6.32 0.20 
6 -5.34 0.18 
7 Set to zero 
8 -0.24 0.10 

R2 
Scaled deviance 
Degrees of freedom 

0.000 
1.05 2.83 
4 

Rrm s =0.005 

geometric crystal class after the gross adjustment of 
dividing the [xi]'s by 2, 4 or 3 has been made. The 
except_ions are in the geometric crystal classes 
(ram, 4m, 32, 3m, 3m, 6m) in which the unit cells can 
use the point groups in two orientations; they are 
automatically allowed for when the arithmetic crystal 
classes are used as factors in the calculations. 

When such linear relationships exist the effects of 
the symmetry elements related by them cannot be 
determined unambiguously; their combined effect 
can be divided among them in an infinity of different 
ways. The program GLIM adopts the procedure of 
using the elements in the order in which they occur 
in the fitting instructions, and rejects any superfluous 
ones; in other words, it attributes maximum effect to 
the symmetry elements first encountered and zero 
effect to those related to elements already encoun- 
tered. One must, therefore, take care to place the 
elements in terms of which one wishes the analysis 
to be carried out at the beginning of the fitting instruc- 
tions. One peculiar linear relationship should be 
noticed: that between the normalizing constant Ace 
and the arithmetic crystal classes. By default, the 
coefficient for the arithmetic class first encountered 
is put equal to zero. It is usually convenient, however, 
to alter the fitting instructions so that the coefficient 
for the class with the laygest number of members is 
zero. Exactly the same fit is obtained. 

The above features of the program are particularly 
helpful in the more symmetric crystal classes, where 

many of the linear relationships are far from obvious. 
One can list as many symmetry elements as one likes, 
in the knowledge that the program will test them for 
linear relationships, use as many as are necessary 
from the beginning of the list, and report the rest as 
'aliased'. Another difficulty in the more symmetric 
classes is the actual counting of the symmetry ele- 
ments; not all elements are represented in Inter- 
national Tables for Crystallography (Hahn, 1987), and 
some minor anomalies may have arisen from undetec- 
ted miscounts. A few gross miscounts revealed them- 
selves immediately through major anomalies. 

2. The triclinic system 

The two triclinic arithmetic crystal classes contain 
only one space-group type each, and are thus of no 
interest at the present stage of the model. For the 
record, at the time of the search P1 had 448 examples 
and P1 had 5864. 

3. The monoclinic system 

The monoclinic and orthorhombic systems were dis- 
cussed in some detail by Wilson (1988a), and the 
recalculations with the more recent sample and with 
arithmetic crystal class as the basic unit need only a 
brief presentation. The data for the monoclinic sys- 
tem are given in Table 1. A cohort equal to the 
entire system is fitted satisfactorily with one set of 
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Table 2. Parameters evaluated for various cohorts in 
the monoclinic system 

P r o g r a m - e s t i m a t e d  s t a n d a r d  d e v i a t i o n s  a r e  g iven  in p a r e n t h e s e s .  

Coe f f i c i en t  Coef f i c i en t  C o e f f i c i e n t  
C o h o r t  o f  [2]  o f  [ rn]  o f  [ i ]  

All space groups 
in geometric 
class 2 -6 -0  (0-4) - -  - -  
in geometric 
class m - -  - 6 . 0  (0.5) - -  
in geometric 
class 2/m -6 .5  (0.2) - 6 . 0  (0.2) - 1 . 7  (0-2) 
with [m] = 0 - 6 . 0  (0.4) - -  -1"3 (0.5) 
with [2] = 0 - -  - 6 . 0  (0.5) - 1 . 8  (0.5) 
in system - 6 . 4  (0.2) - 6 . 0  (0.2) - 1 . 7  (0.2) 

parameters, listed at the bottom of the table. As in 
Wilson (1988a), the calculated frequencies are 
rounded to the nearest integer, but the residuals R2 
are based on the unrounded frequencies. Two space- 
group types (C2 and P21/c) are necessarily fitted 
exactly, as explained above, but the biggest dis- 
crepancy between the observed and the calculated 
values for the eleven others is two units. Unweighted 
R2 is zero to three decimal places, and the scaled 
deviance (1.05) is actually less than the number of 
degrees of freedom (4). It will be noted that the 
coefficient of [2] and the coefficient of [m] are more 
or less equal, that of 1-2] being slightly the larger. 
Approximate consistency of these coefficients 
throughout the system can be checked by evaluating 
them for various cohorts smaller than the entire sys- 
tem. Details are given in Table 2. 

4. The orthorhombic system 

The orthorhombic crystal system has many more 
space-group types than the monoclinic, and a satisfac- 
tory fit could not be obtained for the whole system. 
The data for the geometric crystal class 222 are given 
in Table 3. Though for one space-group type the 
discrepancy between the observed and calculated 
values of Nsg is five units, with R2 = 0.002 and the 
scaled deviance (6.8) within one estimated standard 
deviation of the number of degrees of freedom (4) 
the fit can be regarded as very satisfactory. The fit 
for the geometric crystal class mm (Table 4) is also 
satisfactory, with R2 = 0,028 and the scaled deviance 
(24) within two estimated standard deviations of the 
number of degrees of freedom (13). It may be noted 
that over half of the scaled deviance arises from the 
single space-group type Pmn2, (31), for which the 
number of examples observed is over double the 
number calculated. For the geometric crystal class 
mmm (Table 5) the fit is not satisfactory. Though 
R2 = 0.029 is about the same as for mm, the scaled 
deviance (112) exceeds the number of degrees of 
freedom (19) by fifteen estimated standard deviations, 
and the coefficient of [2,], though not large, has an 

unexpected sign. There are four space-group types 
for which the observed frequency is about twice that 
calculated. The discrepancies could undoubtedly be 
reduced by differentiating between differing types of 
'encumbering'; intuition suggests, for example, that 
a twofold axis lying in a mirror plane may exhibit 
very little independent effect, whereas one lying in a 
glide plane may be 'encumbered' only to a small 
extent. The estimates of the coefficients of [2] and 
[m] are reasonably consistent throughout the ortho- 
rhombic system; for no obvious reason they are about 
half those found for the monoclinic system. 

5. The tetragonal system 

Tetragonal space-group types contain a fourfold axis 
of some kind, in addition to symmetry elements found 
in the monoclinic and orthorhombic groups, and 
these present new problems. One is the coincidence 
of axes of different types. Fourfold rotation axes and 
fourfold rotoinversion axes are also twofold axes; 
should the twofold axes be counted? They are not 
shown as symmetry elements in the drawings in 
Volume A of International Tables for Crystallography 
(Hahn, 1987), but appear in the list of Symmetry 
Operations. The non-directed fourfold screw axis 42 
is also 2 and 2,; should these be counted? The two- 
fold axes appear in the list of Symmetry Operations; 
the screw axes do not. In a similar fashion, 4, and 4 3 
may hide 2,, and 4/m and 42/m may hide 2,. For 
brevity, the symmetry elements represented in the 
drawings are called the visible symmetry elements. 

There seems to be no physical reason to treat the 
lower-order symmetry axis as having any effect addi- 
tional to that of the higher-order axis with which it 
coincides, and this accords with the drawings in 
Volume A; only the higher-order axis is shown. It 
was decided to count only the visible axes; any addi- 
tional ones listed under Symmetry Operations or in 
the preliminary chapters of Volume A were ignored. 
On the other hand, geometrical intuition suggests that 
coincident reflexion and glide planes (which occur 
fairly frequently in centred cells) may have an effect 
other than that of the visible reflexion plane only, 
though possibly not simply the sum of the effects that 
the two planes would have if they were not coincident. 
It was decided to count coincident planes as if they 
were separate; no ill effects arose from this procedure 
for space-group types of the type C 2 - -  in the 
geometric crystal class mm (Wilson, 1988a, § 5.3). 

The enantiomorphous screw axes 4, and 4 3 need 
special consideration. As has been pointed out by 
Donohue (1985), if one stereoisomer crystallizes in a 
space-group type with one of these axes, its enan- 
tiomorph is practically certain to crystallize in the 
enantiomorphous space-gr0up type with the other 
axis. One thus gets two space-group determinations 
from one structure determination in such cases. 
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T a b l e  3 .  Observed and calculated f requency  o f  occurrence o f  space-group types in the orthorhombic geometric 
crystal class 2 2 2 ;  the cohort is the geometric class 

S p a c e  g r o u p  A r i t h m e t i c  F r e q u e n c y  
N o .  S y m b o l  c lass  [2]  O b s e r v e d  C a l c u l a t e d  

16 P222 9 3 4 0 
17 P2221 2 3 6 
18 P2t212 1 163 158 
19 P212t2 t 0 4466 4466 
20 C2221 10 1 58 58 
21 C222 2 2 2 
22 F222 11 1.5 0 0 
23 I222 12 1.5 3 2 
24 I212t21 1.5 1 2 

P a r a m e t e r  v a l u e s  w i th  p r o g r a m - e s t i m a t e d  s t a n d a r d  d e v i a t i o n s  

Coe f f i c i en t  o f  V a l u e  E.s .d .  
[2] -3 .34  0.07 

Arithmetic class 9 Set to zero 
10 -1 .00  0.15 
11 - 9 . 0 9  109 
12 -2 .79  0.66 

R2 0.002 - -  
Scaled deviance 6.78 2.83 
Degrees of  freedom 4 - -  

Rrm s = 0.010 

Note. The l a r g e  a n d  p o o r l y  d e t e r m i n e d  p a r a m e t e r  fo r  a r i t h m e t i c  c lass  11 ref lec ts  t h e  f ac t  t h a t  t h e r e  a r e  n o  o b s e r v e d  e x a m p l e s .  

T a b l e  4 .  Observed and calculated f requency  o f  occurrence o f  space-group types in the orthorhombic geometric 
crystal class mm;  the cohort is the geometric class 

S p a c e  g r o u p  A r i t h m e t i c  F r e q u e n c y  
No .  S y m b o l  c lass  [2If  tee [2]e .c  [21]rr~ [ m ]  O b s e r v e d  C a l c u l a t e d  

25 Pmm2 13 0 1 0 2 0 0 
26 Pmc21 0 0 0 1 8 12 
27 Pcc2 0 1 0 0 0 2 
28 Pma2 0 1 0 1 0 0 
29 Pca21 0 0 0 0 275 278 
30 Pnc2 0 1 0 0 3 2 
31 Pmn21 0 0 0 1 28 12 
32 Pba2 1 0 0 0 11 10 
33 Pna2 t 0 0 1 0 600 600 
34 Pnn2 1 0 0 0 9 10 
35 Cram2 14 0 1 0 1 0 0 
36 Cmc2 t 0 0 0 0.5 60 61 
37 Ccc2 0 1 0 0 5 2 
38 C2rnm 15 0 0-5 0 1 0 2 
39 C2mb 0 0.5 0 0.5 4 7 
40 C2cm 0 0.5 0 0.5 9 7 
41 C2cb 0 0.5 0 0 39 35 
42 From2 16 0 0.5 0 0-5 8 8 
43 Fdd2 0.5 0 0-5 0 135 135 
44 lmm2 17 0 0.5 0 1 1 1 
45 lba2 0 0"5 0 0 32 28 
46 Ima2 0 0.5 0 0-5 3 6 

P a r a m e t e r  v a l u e s  wi th  p r o g r a m - e s t i m a t e d  s t a n d a r d  d e v i a t i o n s  

Coe f f i c i en t  o f  V a l u e  E.s .d .  

[2]fre e --3"32 0"52 
[2]eric --4"99 0"44 
[21 ]free 0"77 0"06 
[m] -3 .15  0.20 

Arithmetic class 13 Set to zero 
14 0.06 0.16 
15 0-43 0.26 
16 0.55 0.14 
17 0.22 0.28 

R 2 0"028 - -  
Scaled deviance 24.1 5.1 
Degrees of  freedom 13 

Rrms = 0.040 
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Table 5. Observed and calculated frequency of occurrence of space-group types in the orthorhombic geometric 
crystal class mmm; the cohort is the geometric class 

Space group Arithmetic Frequency 
No.  Symbol class [2]free [2]e.c [21]fre~ [ m ]  Observed Calculated 
47 Pramrn 18 0 3 0 3 0 0 
48 Pann 3 0 0 0 2 0 
49 Pccm 0 3 0 1 0 0 
50 Pban 1 2 0 0 1 0 
51 Pmma 0 2 0 2 2 0 
52 Pnna 1 1 1 0 20 5 
53 Pinna 0 2 0 1 4 I 
54 Pcca 1 1 0 0 10 12 
55 Pbam 1 0 0 1 8 18 
56 Pccn 0 1 2 0 134 152 
57 Pbcm 0 1 0 1 36 37 
58 Pnnm 1 0 0 1 18 18 
59 Pmmn 0 1 0 2 9 2 
60 Pbcn 0 1 1 0 347 326 
61 Pbca 0 0 0 0 1645 1645 
62 Pnma 0 0 1 1 502 499 
63 Cm cm 19 0 1 0 1 40 12 
64 Craca 0 1 0 0.5 44 54 
65 Cmmm 0 2 0 1.5 0 0 
66 Cccm 0 2 0 O. 5 2 2 
67 Cmma 0 2 0 1 1 0 
68 Ccca 0 2 0 0 6 8 
69 Fmmm 20 0 1.5 0 0.75 1 5 
70 Fddd 1.5 0 1.5 0 19 5 
71 lmmm 21 0 1.5 0 1.5 0 0 
72 lbam 0 1.5 0 0.5 14 1 
73 Ibca 0 1.5 0 0 4 6 
74 Imma 0 1.5 0 1 3 0 

Parameter values with program-estimated standard deviations 

Coefficient of  Value E.s.d.  

[2]fr~¢ -4"08 O" 16 
[2]~.¢ -3 .37 0.16 
[21]free -0"76 0"07 
[m] -2"94 0"36 
[1] -2.51 0.24 

Arithmetic class 18 Set to zero 
19 -1 .09 0.16 
20 -0 .97 0.35 
21 -3.01 0.40 

R 2 0"029 - -  
Scaled deviance 112 6-2 
Degrees of freedom 19 - -  

Rrms = 0"025 

The sign of  the coefficient of  [21]free is unexpected. 

Should the total number of structures in the two 
space-group types be attributed to each? Or should 
the two space-group types be added together and 
treated as a single space-group type? In the calcula- 
tions here the latter procedure was chosen, since it 
does not give double statistical weight to structures 
in these space-group types. 

5.1. Linear relationships 

As already noted for the monoclinic and ortho- 
rhombic systems, within each point group there is a 
certain 'conservation of symmetry elements'; the 
different space-group types interchange reflexion 
planes and the various types of glide plane, but the 
total number of planes remains constant (within the 
complication already mentioned for centred cells, and 
a special complication arising from the two orienta- 

tions, 42m and a, m2, of the point group 4m). 
Similarly, the various types of axis interchange, but 
the total number remains constant. This 'conserva- 
tion' gives rise to linear relations between the sym- 
metry elements, the most obvious of which is 

[ 41+ [4 ,1+ [_421+ [431  = C, (7) 

where [ . . . ]  indicates the number of symmetry ele- 
ments within the volume-equivalent cell of the type 
indicated between the square brackets and C is a 
constant for the geometric crystal class. A less- 
obvious relation is 

[21+ [2,1+ [41 = A, (8) 

where A is a constant within a geometric crystal class. 
For planes the relation is 

[ m ] + [ g ] =  P, (9) 
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Table 6. Observed and calculated frequencies of space-group types in the simpler tetragonal classes; the cohort 
is the combined geometrical classes 4, 4 and 422 

S p a c e  g r o u p  Ar i thme t i c  F r e q u e n c y  
No .  S y m b o l  class [2]  [4] [41,3] O b s e r v e d  C a l c u l a t e d  

75 P4 22 1 1 0 1 0 
76 P4 t 0 0 1 83 84 
77 P42 1 0 0 6 5 
78 P43 Included in 76 
79 14 23 0 0.5 0 11 11 
80 I41 1 0 0 15 15 
81 P4 24 1 0 0 4 4 
82 I4  25 0 0 0 27 27 
89 P422 28 3 1 0 0 0 
90 P42t2 1 1 0 0 0 
91 P4t22 2 0 1 3 3 
92 P4t2t2 0 0 1 167 166 
93 P4222 3 0 0 0 0 
94 P422t2 1 0.5 0 8 9 
95 P4322 Included in 91 
96 P432t2 Included in 92 
97 I422 29 1 0.5 0 0 0 
98 I4122 2 0 1 1 1 

P a r a m e t e r  va lues  wi th  p r o g r a m - e s t i m a t e d  s t a n d a r d  dev ia t ions  

Coeff ic ient  o f  Va lue  E.s.d. 

[2] -2.00 0.32 
[4] -4.63 1.03 
[41.3] 0"91 0"43 

Arithmetic class 22 -0 .69 0.11 
23 0.51 0.38 
24 -0.81 0.62 
25 -0.91 0.47 
28 Set to zero 
29 -1 .25 1.60 

R 2 0.012 - -  
Scaled deviance 1.19 3.46 
Degrees of freedom 6 

Rrm s = 0"060 

where again P is a constant within a geometric crystal 
class, provided that all planes, and not merely the 
visible ones, are included in the enumeration. For 
two or three space-group types, for which the invisible 
glide planes could not be deduced with certainty from 
either the paragraph Symmetry Operations or the 
introductory material of Volume A, (9) was accepted 
as an article of faith and [g] was deduced from [m]. 

5.2. Comparison of observed and calculated frequencies 

The observed numbers of structures in the space- 
group types of the tetragonal system are given in 
Tables 6-10, together with the numbers calculated 
from (2) including the tetragonal symmetry elements. 

Agreement is in general good, though space groups 
P4n2 (118) and possibly P42/mnm (136) are excep- 
tions. For the simpler geometric crystal classes the 
maximum discrepancy is one unit, and in fact the 
geometric classes without mirror planes (4, 4, 422) 
can be combined in a single cohort (Table 6). With 
R2 = 0.012 and the scaled deviance (1.3) much less 
than the number of degrees of freedom (6) the agree- 
ment is very satisfactory. The same is true for 4 /m 
(Table 7, R2 = 0.008, scaled deviance = 0.66, DF = 1). 

In 4mm (Table 8) there is one discrepancy of three 
units, but overall the agreement is as good as can be 
expected statistically [scaled deviance (5.2) less than 
the number of degrees of freedom (7); R2=0.24, 
value expected from (3) 0.29]. In 4m (Table 9) there 
is a discrepancy of 6 units for P4n2 (118), but overall 
the agreement is not bad (R2 = 0.13, scaled deviance = 
14.2 with e.s.d. 4.0, DF = 8). The value of Rrm s from 
(3) is 0"14. In 4/mmm (Table 10) the maximum 
discrepancy is 4 units for P42/mnm (136), and overall 
the agreement is as good as can be expected for such 
a sparsely populated class - a total of 48 examples, 
with the result that several of the parameters are less 
than their program-estimated standard deviations. 
The value of R2 = 0.31 is high, but (3) indicates that 
0.30 is to be expected with so few examples. The 
scaled deviance of 13.1 with e.s.d, of 5.3 is less than 
the number of degrees of freedom (14). 

6. The trigonal system 

The trigonal system contains only 402 structures, dis- 
tributed over 24 space-group types, or 22 when enan- 
tiomorphous groups are combined. The number of 
space-group types in each arithmetic crystal class, 
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Table 7. Observed and calculated frequencies of occurrence of space-group types in the geometric crystal class 
4/m; the cohort is the geometric class 

Space group Arithmetic Frequency 
No.  S y m b o l  c lass  [2]  [4]  [41,3] [ m ]  O b s e r v e d  C a l c u l a t e d  

83 P4/m 26 1 1 0 1 1 0 
84 P42/m 26 1 0 0 1 0 0 
85 P4/n 26 0 1 0 0 4 4 
86 P42/n 26 0 0 0 0 61 61 
87 I4/m 27 0 0.5 0 0.5 12 12 
88 I4t/a 27 0 0 1 0 100 100 

Parameter values with program-estimated standard deviations 

Coefficient o f  V a l u e  E.s .d .  

[2] -6-55 12.8 
[4] -2 .72  0.56 

[41,3] 0.494 0.12 
[m] -0 .528 0.79 

R 2 0"008 - -  Rrm s = 0.46 
Scaled deviance 0.68 1.41 
Degrees of freedom 1 - -  

Note. The arithmetic class is not a significant factor in this cohort. The large negative coefficient o f  [2]  a n d  its large e.s.d, reflect the 
fac t  that the two space groups with diad axes are rare in comparison with those without d i a d s .  

Table 8. Observed and calculated frequencies of occurrences of space-group types in the geometric crystal class 
4ram; the cohort is the geometric class 

Space group Arithmetic Frequency 
No.  S y m b o l  c lass  [2]  [4] [41,3] [ m ]  O b s e r v e d  C a l c u l a t e d  

99 P4mm 30 1 1 0 4 0 0 
100 P4bm 30 1 1 0 2 0 0 
101 P42cm 30 1 0 0 2 0 1 
102 P42nm 30 1 0 0 2 2 1 
103 P4cc 30 1 1 0 0 0 1 
104 P4nc 30 1 1 0 0 4 1 
105 P42mc 30 1 0 0 2 1 1 
106 P42bc 30 1 0 0 0 5 5 
107 14mm 31 0 0.5 0 2 0 0 
108 I4cm 31 0 0"5 0 1 1 1 
109 I4~md 31 1 0 1 1 4 4 
110 14tcd 31 1 0 1 0 12 12 

Parameter values and program-estimated s t a n d a r d  deviations 

Coefficient o f  V a l u e  

[4] -1.41 
[41,3] 0"83 
[m] -1"03 

R2 0.24 
Scaled deviance 5-2 
Degrees of freedom 8 

Note. Diad axes a n d  a r i t h m e t i c  class are not significant. 

E.s .d .  

0.84 
0.43 
0.36 

4.0 
Rrm s = 0.29 

however, is small (two contain only a single space- 
group type), and the model gives a good fit to a cohort 
consisting of the entire system. Several of the sym- 
metry elements are rejected by linear relationships, 
and others are small in comparison with their pro- 
gram-estimated standard deviations. The fit obtained 
with twofold axes, threefold screw axes and mirror 
planes as the significant symmetry elements is given 
in Table 11, along with the values of the parameters. 
With R2=0 .029  and the scaled deviance (5.7 with 
e.s.d. = 3.7) less than the number of degrees of  free- 
dom (7) the fit may be regarded as very satisfactory. 

7. The hexagonal system 

The hexagonal system contains only 125 structures, 
even fewer than the trigonal system. They are dis- 
tributed over 27 space-group types, or 23 when enan- 
tiomorphous groups are combined. The number of 
space-group types in each arithmetic crystal class, 
however, is not large (one contains only a single 
space-group type), and the model gives a good fit to 
a cohort consisting of the entire system. Several of  
the symmetry elements are rejected by linear relation- 
ships, and others are small in comparison with their 
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Table 9. Observed and calculated fre_quencies of  occurrence of space-group types in the geometric crystal class 
4m; the cohort is the geometric class 

Space group Arithmetic Frequency  
No. Symbol  class [2]free [2]en c [m]  Observed Calculated 

111 P42rn 32 0 3 2 0 0 
112 P42c 32 0 3 0 0 1 
113 PT~2trn 32 0 1 2 9 10 
114 P42tc 32 0 1 0 55 54 
115 P4m2 33 0 3 2 1 0 
116 P4c2 33 0 3 0 0 1 
117 P462 33 3 0 0 2 3 
118 P4n2 33 3 0 0 6 3 
119 I7~m2 34 0 2 1 0 0 
120 I7~c2 34 0 2 0 0 0 
121 I42m 35 0 1 1 9 5 
122 I42d 35 1 0 0 12 14 

Parameter  values and program-es t imated  s tandard  deviations 

Coefficient o f  Value E.s.d. 

[2]free -1"60 0"23 
[2]en c -1"87 0"43 
[m] -0"83 0-15 

Arithmetic class 33 Set to zero 
34 -10.41 1299 
35 -1.60 0.35 

R 2 0" 11 - -  Rrm s = 0" 12 
Scaled deviance 8.0 3.5 
Degrees of freedom 6 - -  

Note. Distinguishing between free and encumbered  axes, as in certain o r tho rhombic  classes, considerably  improves the fit. The large 
negative value, with very large e.s.d., for the coefficient for the ari thmetic class 34 arises because the class has no examples. 

Table 10. Observed and calculated frequency of  occurrence of space-group types in the geometric crystal class 
4/ mmm; the cohort is the geometric class 

The cohort  is sparsely popula ted ,  and only the coefficients o f  [41,3] and [m]  are statistically significant. Retaining ari thmetic crystal 
class as a factor  gives a better fit, though the coefficient is smaller than its program-es t imated  s tandard  deviation. 

Parameter  values 

Space group Arithmetic Frequency  
No. Symbol  class [41.3] [rn] Observed Calculated 

123 P4/mmm 36 0 5 1 0 
124 P4/ m cc 36 0 1 2 2 
125 P4/nbm 36 0 2 0 1 
126 P4/nnc 36 0 0 3 3 
127 P4/mbm 36 0 3 0 0 
128 P4/mnc 36 0 1 1 2 
129 P4/nmm 36 0 4 1 0 
130 P4/ncc 36 0 0 3 3 
131 P42/mmc 36 0 3 1 0 
132 P42/mcm 36 0 3 1 0 
133 P42/nbc 36 0 0 2 3 
134 P42/nnm 36 0 2 2 1 
135 P42/mbc 36 0 1 2 2 
136 P42/mnm 36 0 3 5 0 
137 P42/nmc 36 0 3 2 0 
138 P42/ncm 36 0 2 0 1 
139 I4mmm 37 0 3 2 0 
140 I4/mcm 37 0 2 0 1 
141 141/amd 37 2 2 3 4 
142 I41/acd 37 2 0 17 16 

with program-es t imated  s tandard deviat ions 

Coefficient o f  Value E.s.d. 

[41,3]  1"21 0"92 
[m] -0"63 0-19 

Arithmetic class 37 Set to zero 
38 -0.73 1.85 

R 2 0-30 - -  Rrm s = 0"32 
Scaled deviance 13.9 5.7 
Degrees of freedom 16 - -  
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Table 11. Observed and calculated frequencies of space-group types in the trigonal system; the cohort is the 
entire system 

Space  group Arithmetic  Frequency  
No.  Symbol  class [2] [31,2] [ m ]  Observed Calculated  

143 P3 38 0 0 0 5 2 
144 P31 38 0 3 0 52 53 
145 P32 38 0 3 0 Included in 144 
146 R3 39 0 2 0 57 57 
147 P3 40 0 0 0 26 26 
148 R3 41 0 2 0 132 132 
149 P312 42 6 0 0 0 0 
150 P321 43 3 0 0 0 2 
151 P3112 42 6 3 0 2 2 
152 P3221 43 3 3 0 38 37 
153 P3212 42 6 3 0 Included in 151 
154 P3221 43 3 3 0 Included in 152 
155 R32 44 6 2 0 3 3 
156 P3ml 45 0 0 6 1 0 
157 P31 m 46 0 0 3 0 0 
158 P3cl 45 0 0 0 2 2 
159 P31c 46 0 0 0 1 1 
160 R3m 47 0 2 3 7 8 
161 R3c 47 0 2 0 41 40 
162 P31 m 48 6 0 3 0 1 
163 P31c 48 6 0 0 5 4 
164 P3 m I 49 3 0 6 1 0 
165 P3cl 49 3 0 12 4 4 
166 R3m 50 6 2 3 6 4 
167 R3c 50 6 2 6 19 20 

Parameter va lues  with  program-es t imated  standard dev iat ions  

Coeff ic ient  o f  Value  E.s.d.  

[2] -0-312 0-037 
[3t.2] 1.06 0.22 
[m] -0.534 0.107 

Arithmetic class 38 -1.97 0.25 
39 -0.840 0.142 
40 0-489 0.477 
41 Set at zero 
42 -3.38 0.91 
43 - 1.40 0.27 
44 -1.91 0.69 
45 -2 .04  0-94 
46 -2 .84  1.51 
47 -1 .19 0.16 
48 0.567 0.695 
49 -0.419 0.700 

R 2 0.029 - -  
Scaled deviance 5.65 3.7 
Degrees of freedom 7 - -  

program-estimated standard deviations. The fit 
obtained with twofold axes and sixfold screw axes 
6~.5 as the significant symmetry elements is given in 
Table 12, along with the values of the parameters. 
The value R2 = 0.094 may be regarded as adequate 
for such a small number of  structures [ (3) gives R r m  s - -  

0.14]; the maximum difference between the observed 
and calculated frequencies is 3 units. The scaled devi- 
ance (10.3 with e.s.d.= 5.1) is less than the number 
of degrees of  freedom (13), and is thus satisfactory. 

8. The cubic system 

The present sample has very few structures in the 
cubic system; they are listed in Table 13. With so few 

examples it is obviously useless to try to fit a detailed 
statistical model. The only space-group type having 
two-figure frequency is Pa3 with 19 examples, so 
it was thought that a cohort consisting of the 
geometrical crystal class m3 might be worth inves- 
tigating. A trial with [2], [m] and arithmetic crystal 
class gave practically perfect agreement, but all par- 
ameters were smaller than their program-estimated 
standard deviations, the coefficient of [2] being the 
best determined. The fit with [2] as the only variate 
is shown in Table 14. Statistically it is satisfactory, 
with R2 = 0.12, R r m  s = 0.22, scaled deviance 2.7 with 
e.s.d. 3.2 and five degrees of freedom. The numbers 
are so small, however, that one can only say that the 
cubic system gives no evidence against the model. 
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Table 12. Observed and calculated frequencies of space-group types in the hexagonal system; the cohort is the 
entire system 

Parameter  values 

Space g roup  
No. Symbol  

168 P6 
169 P6t 
170 P6s 
171 P62 
172 P64 
173 P63 
174 P() 
175 P6/m 
176 P63 
177 P622 
178 P6t22 
179 P6522 
180 P6222 
181 P6422 
182 P6322 
183 P6mm 
184 P6 cc 
185 P63cm 
186 P63 mc 
187 P6m2 
188 P6c2 
189 P62m 
190 P62c 
191 P6/ mmm 
192 P6/ mcc 
193 P63/mcm 
194 P63/mmc 

with program-es t imated  s tandard  

Coefficient o f  

[2] 
[6t.5] 

Arithmetic class 51 
52 
53 
54 
55 
56 
57 
58 

R2 
Scaled deviance 
Degrees of freedom 

Ari thmetic  Frequency  
class [2] [6t,5] Observed Calcula ted  

51 3 0 0 0 
51 0 1 42 43 
51 0 1 Included in 169 
51 3 0 3 0 
51 3 0 Included in 171 
51 0 0 14 14 
52 0 0 1 1 
53 3 0 0 1 
53 0 0 37 37 
54 9 0 0 0 
54 6 1 9 8 
54 6 1 Included in 178 
54 9 0 2 0 
54 9 0 Included in 180 
54 6 0 1 3 
55 3 0 0 0 
55 3 0 0 0 
55 0 0 2 3 
55 0 0 5 3 
56 3 0 0 0 
56 3 0 0 0 
57 3 0 0 2 
57 3 0 4 2 
58 9 0 1 0 
58 9 0 1 0 
58 6 0 1 2 
58 6 0 2 2 

deviat ions 

Value E.s.d. 

-1-12 0.38 
1-14 0-27 

Set to zero 
-2.61 1.67 

0.99 0.28 
5.04 2.30 

-1.36 0.51 
- 11 Large 

1.43 1.33 
4.53 2.42 

0.094 
10.3 5.1 
13 

Rrm s = 0"14 

Table 13. Observed frequency of occurrence of space-group types in the cubic system 

Space g roup  Space g roup  
No.  Symbol Frequency  No.  Symbol  Frequency  

195 P23 0 213 P4132 2 
196 F23 0 214 I4132 0 
197 I23 2 215 P43m 0 
198 P213 3 216 F43m 0 
199 I2t3 0 217 I43m 7 
200 Pm 3 0 218 P~,3 n 4 
201 Pn3 0 219 F7~3c 4 
202 Fro3 1 220 I43d 3 
203 Fd3 0 221 Pm3m 0 
204 lm3 2 222 Pn3n 2 
205 Pa3 19 223 Pm3n 1 
206 la3 3 224 Pn3m 1 
207 P432 0 225 Fm3rn 3 
208 P4232 0 226 Fm3c 0 
209 F432 0 227 Fd3m 1 
210 F4t32 0 228 Fd3c 0 
211 I432 0 229 lm3m 5 
212 P4332 Included 230 la3d 1 

in 213 
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Table 14. Observed and calculated frequencies of space-group types in the cubic geometric class m3; the cohort 
is the geometric class 

Space group Arithmetic Frequency 
No. Symbol class [2] [ m ] Observed Calculated 

200 Pm3 62 3 3 0 0 
201 Pn3 62 3 0 0 0 
202 Fm3 63 2 2 1 1 
203 Fd3 63 2 0 0 1 
204 Im3 64 2 2 2 1 
205 Pa3 62 0 0 19 19 
206 Ia3 64 2 0 3 1 

Parameter value with program-estimated standard deviation 
Value E.s.d. 

Coefficient of [2] -1.82 0.37 

R 2 0-12 - -  
Scaled deviance 2.7 3.2 
Degrees of freedom 5 - -  

Rrm s = 0.22 

The coefficients of [m] and of arithmetic class are not significant. 

I am indebted to Professor Theo Hahn for help in 
the understanding of symmetry elements and of their 
representation in International Tables for Crystal- 
lography, and to my colleagues at the Cambridge 
Crystallographic Data Centre, particularly Drs Frank 
Allen and David Watson, for making available pro- 
grams and carrying out the searches necessary for 
this work. 
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X-ray Birefringence and Dichroism in Lithium Niobate, LiNb03 
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Abstract 

Accurate synchrotron-radiation X-ray transmission 
measurements have been carried out on hexagonal 
LiNbO3 in the vicinity of the Nb K-absorption edge 
(E = 18.986 keV). The experiments were performed 
on the two-axis dittractometer at HASYLAB in dedi- 
cated mode of DORIS II (3.7 GeV). Single-crystal 
wafers cut perpendicular to [10.0] were rotated 

around the monochromatized beam using an experi- 
mental set up analogous to the optical polarizing- 
microscope. Both the horizontally and vertically 
polarized components of the transmitted radiation 
were recorded at the same time and analysed in terms 
of a classical optical model derived from the Jones 
calculus. Fits to the observations yielded agreement 
indices between 0.013 and 0.052 supporting the 
applicability of the model to X-ray energies. X-ray 
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